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Accurate pulmonary image registration is a challenging problem when the lungs have a deformation with large distance. In this
work, we present a nonrigid volumetric registration algorithm to track lung motion between a pair of intrasubject CT images
acquired at different inflation levels and introduce a new vesselness similarity cost that improves intensity-only registration. Volu-
metric CT datasets from six human subjects were used in this study. The performance of four intensity-only registration algorithms
was compared with and without adding the vesselness similarity cost function. Matching accuracy was evaluated using landmarks,
vessel tree, and fissure planes. The Jacobian determinant of the transformation was used to reveal the deformation pattern of local
parenchymal tissue. The average matching error for intensity-only registration methods was on the order of 1 mm at landmarks
and 1.5 mm on fissure planes. After adding the vesselness preserving cost function, the landmark and fissure positioning errors
decreased approximately by 25% and 30%, respectively. The vesselness cost function effectively helped improve the registration
accuracy in regions near thoracic cage and near the diaphragm for all the intensity-only registration algorithms tested and also
helped produce more consistent and more reliable patterns of regional tissue deformation.

1. Introduction

Image registration is used to find the spatial correspondence
between two images and plays an important role in pul-
monary image analysis. In a sequence of pulmonary scans,
image registration provides the spatial locations of corre-
sponding voxels. The computed correspondences describe
the motion of the lung between a pair of images at the voxel
level. Registration of lung volumes across time or across
modalities has been utilized to establish lung atlases [1],
estimate regional ventilation and local lung tissue expansion
[2–5], assess lobar slippage during respiration [6, 7], and
measure pulmonary function change following radiation
therapy [8].

Lung registration methods are typically intensity-based
[2, 5, 9–13] or feature-based [14–18]. Intensity-based meth-
ods consider intensity patterns of the whole lung regions
to define similarity measures. They take advantage of the

strong contrast between the lung parenchyma and the chest
wall, and between the parenchyma, the blood vessels and
larger airways. Commonly used intensity-based methods
include minimizing intensity difference [3, 10], maximizing
mutual information or normalized cross correlation [5, 9],
and preserving tissue volume or lung mass [12, 13]. Since
intensity-based methods do not use anatomical knowledge,
these methods can get stuck in local minima resulting in mis-
matches of important anatomical structures such as bifur-
cations of smaller airway and vessel branches. On the other
hand, feature-based methods define transformations utiliz-
ing corresponding features derived from original images.
They usually utilize corresponding landmarks and local
intensity patterns [14, 16, 17] and surfaces correspondences
[14, 15, 18]. However, due to the sparsity of features, good
alignment of features can not guarantee satisfactory match-
ing accuracy for all lung regions.
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Since registration methods using either intensity-only or
feature-only registration have their limitations, it is desirable
to design lung registration methods that utilize both intensity
and feature information [19–23]. It has been shown that
hybrid registration methods that combine intensity and
feature information can help improve matching accuracy.
Most of these methods incorporate distributed landmark
pairs selected at airway or vessel branch points, that were
identified manually or semiautomatically [24], centerline
of the airway and vessel tree structures, and lung surface
information. These feature extractions may be difficult and
time-consuming tasks. Therefore, fast feature extractions
and effective methods to utilize feature information are
needed to improve registration accuracy.

In this paper, we couple intensity and feature information
together to match 3D lung CT images acquired during
breath hold at two different levels of inflation. We propose
a feature-based similarity criterion utilizing the information
of vessel locations and shapes in the registration process. This
vesselness preserving cost function is added to four existing
intensity-based similarity costs, and comparison experi-
ments show that this criterion helps improve the registration
accuracy. Higher matching accuracy makes the postanalysis
of regional tissue mechanical properties more plausible and
reliable.

Our preliminary work on the effectiveness of using a
vesselness matching similarity term was described in [25–
27]. The work presented in this paper provides a complete
description of our vesselness matching approach. This paper
extends our previous work by describing how to choose
weighting factors for the different cost terms, describes a
multiresolution optimization scheme, and provides more
validation. This paper studies the effect of the vessel
matching when used with various intensity similarity metrics
such as the sum of squared intensity difference, sum of
squared tissue volume difference, mutual information, and
normalized cross correlation. This paper also examines the
effect of using a linear-elastic constraint to regularize the dis-
placement fields.

2. Material and Methods

2.1. Image Data Sets. In this study, six pairs of volumetric CT
data sets from six human subjects in the supine orientation
were collected on a Siemens Sensation 64 multidetector CT
scanner. Each image pair was acquired during breath-holds
near functional residual capacity (FRC) and total lung
capacity (TLC) in the same scanning session. For subject 1,
data were acquired at functional residual capacity (FRC) with
21.8% of the vital capacity (VC) and total lung capacity
(TLC) with 95.6% of the VC. For subject 2, data were
acquired at FRC with 30.5% of the VC and TLC with 89.6%
of the VC. For subject 3, data were acquired at FRC with
26.3% of the VC and TLC with 95.7% of the VC. For subject
4, data were acquired at FRC with 11.0% of the VC and TLC
with 68.9% of the VC. For subject 5, data were acquired
at FRC with 25.8% of the VC and TLC with 92.9% of the
VC. For subject 6, data were acquired at FRC with 26.5% of

(a)

(b)

Figure 1: Pulmonary CT images acquired at breath hold (a) maxi-
mum exhale and (b) maximum inhale with renderings of the lung
segmentations (green objects).

the VC and TLC with 102.0% of the VC. Each volumetric
data set was acquired at a section spacing of 0.5∼0.6 mm
and a reconstruction matrix of 512 × 512. In-plane pixel
spatial resolution was approximately 0.6 mm × 0.6 mm. The
parenchyma regions in the FRC and TLC data sets were
segmented using the method described in [28]. Figure 1 gives
an illustration of pulmonary CT images with renderings of
the lung segmentations.

2.2. Image Registration. The goal of image registration is to
estimate a transformation h that defines the pointwise cor-
respondences between two images I1 and I2. More formally,
let D ⊂ R3 define the domain of the images I1 : D → R and
I2 : D → R. In this work, the transformation h : D → D is
assumed to be a diffeomorphism. Let H denote the set of all
diffeomorphisms from D to D. The optimal transformation
h ∈ H is estimated by minimizing a cost function that
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consists of a similarity cost function and a regularizing term,
that is,

̂h = arg min
h∈H

CSIM(I1, I2,h) + λCREG(h). (1)

The similarity cost function describes the characteristics
of two images that should agree for corresponding image
points. For example, these characteristics often correspond to
matching intensity characteristics and features. The regular-
ization cost function is used to enforce desired properties of
the transformation such as minimum distortion. The cons-
tant λ is used to balance the influence of the regularization
cost with respect to the similarity cost. In general, the simi-
larity and the regularization costs can be decomposed into
linear combinations of more specific cost functions.

2.2.1. Intensity-Based Similarity Cost Functions. For inten-
sity-based image registration, it is usually assumed that
intensities of corresponding voxels are related to each other
in some way. Many criteria to construct the intensity rela-
tionship between corresponding points have been suggested
as the cost function for aligning two images. Examples of
intensity-based cost functions are the mean square difference
(MSD), correlation coefficient, mutual information, pattern
intensity, and gradient correlation [29, 30]. In this work,
we investigated three commonly used intensity-based cost
functions and one intensity-based cost function designed for
matching lung CT images.

Sum of Squared Difference (SSD). Minimizing the intensity
difference at corresponding points between two images is
an intuitive method to register grayscale images. A simple
and common cost function is the sum of squared difference
(SSD) defined by

CSSD =
∑

x∈Ω
[I2(x)− I1(h(x))]2, (2)

where I1 and I2 are the template and target image intensity
functions, respectively. Ω ⊂ R3 denotes the union of lung
regions in target image and deformed template image. The
underlying assumption of SSD is that the image intensity
at corresponding points between two images should be
similar. This is true when registering images of the same
modality. However, considering the change in CT intensity
as air inspired and expired during the respiratory cycle, the
grayscale range is different within the lung region in two CT
images acquired at different inflation levels. To balance this
grayscale range difference, intensity normalization is needed.
For example, a histogram matching procedure [31] can be
used before SSD registration to modify the histogram of
template image so that it is similar to that of target image.

Mutual Information (MI). Mutual information (MI) simi-
larity cost function can accommodate intensity difference
between two images and is therefore well-suited to accom-
modate the CT intensity change during inflation and defla-
tion of the lung. Mutual information expresses the amount

of information that one image contains about the other one.
Analogous to the Kullback-Leibler measure, the negative
mutual information cost of two images is defined as [9, 32]

CMI = −
∑

i

∑

j

p
(

i, j
)

log
p
(

i, j
)

pI1◦h(i)pI2

(

j
) , (3)

where p(i, j) is the joint intensity distribution of transformed
template image I1 ◦ h and target image I2; pI1◦h(i) and pI2 ( j)
are their marginal distributions, respectively. The histogram
bins of I1◦h and I2 are indexed by i and j. The experiments of
MI-driven registration use 50×50 histogram bins to estimate
joint distribution.

Normalized Cross Correlation (NCC). Normalized cross cor-
relation can be used for multimodality registration problems
since it is insensitive to a constant multiplicative factor
between the images. This cost function measures the pixel-
wise cross-correlation between image intensities normalized
by the square root of the autocorrelation of each image.
Mathematically, the negative normalized cross correlation
measure is given by [33]

CNCC = −
∑

x∈Ω I2(x) · I1(h(x))
√

∑

x∈Ω I2(x)2 ·∑x∈Ω I1(h(x))2
, (4)

where the negative sign was added so that the optimal trans-
formation h is found by minimization. When the factor of
the intensity patterns from two images is a constant, the
measure equals −1. Misalignments between the images will
result in decrease of the normalized cross correlation, and
thus, increase of the similarity cost CNCC.

Sum of Squared Tissue Volume Difference (SSTVD). The sum
of squared tissue volume difference (SSTVD) cost function
[13] accounts for the variation of intensity in the lung CT
images during respiration. Assume that lung is a mixture
of two materials: air and tissue/blood (nonair). Then the
Hounsfield units (HU) in lung CT images is a function of
tissue and air content. From the HU of CT lung images,
the regional tissue volume and air volume can be estimated
following the air-tissue mixture model by Hoffman and
Ritman [34]. Let v(x) be the volume element at location x.
Then the tissue volume V(x) within the volume element can
be estimated as V(x) = v(x)((HU(x) − HUair)/(HUtissue −
HUair)), where we assume that HUair = −1000 and
HUtissue = 0. The intensity similarity cost function SSTVD
is defined as [13]

CSSTVD =
∫

Ω
[V2(x)−V1(h(x))]2dx

=
∫

Ω

[

v2(x)
I2(x) + 1000

1055

−v1(h(x))
I1(h(x)) + 1000

1055

]2

dx.

(5)

The Jacobian of a transformation J(h) estimates the regional
volume changes resulted from mapping corresponding
regions. Thus, the tissue volumes in image I1 and I2 are
related by v1(h(x)) = v2(x) · J(h(x)).



4 International Journal of Biomedical Imaging

2.2.2. Feature-Based Similarity Cost Function. Feature infor-
mation extracted from the grayscale image is important to
help guide the registration process. During the respiration
cycle, blood vessels keep their tubular shapes and tree struc-
tures. Therefore, the shape and spatial information of vessels
can be utilized to help improve the registration accuracy.
In CT images, blood vessels have larger intensity values
than that of parenchyma tissues. This intensity difference
between parenchyma and blood vessels can effectively help
intensity-based registration. However, the diameter of vessel
becomes smaller as the blood vessel branches. The small
blood vessels are difficult to visualize because of their low
intensity contrast. Therefore, grayscale information of the
small vessels give almost no contribution to the intensity-
based registration. In order to better utilize the information
of blood vessel locations, we utilize the vesselness measure
(VM) computed from intensity images rather than using
their grayscales directly.

Sum of Squared Vesselness Measure Difference (SSVMD). The
vesselness measure is based on the analysis of eigenvalues of
the Hessian matrix of image intensity. The eigenvalues, which
are geometrically interpreted as principal curvatures, can be
used to indicate the shape of underlying object. In 3D lung
CT images, isotropic structures such as parenchyma tissues
(dark) are associated with three similar nonzero positive
eigenvalues. Tubular structures such as blood vessels (bright)
are associated with one negligible eigenvalue and two similar
nonzero negative eigenvalues [35]. Ordering the eigenvalues
of a Hessian matrix by magnitude |λ1| ≤ |λ2| ≤ |λ3|, the
Frangi’s vesselness function [35] is defined as

F(λ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

1− e−R
2
A/2α

2
)

· e−R2
B/2β

2 ·
(

1− e−S2/2ρ2
)

if λ2 < 0 and λ3 < 0,

0 otherwise,

(6)

with RA = |λ2|/|λ3|,RB = |λ1|/
√|λ2λ3|, S =

√

λ2
1 + λ2

2 + λ2
3,

where RA distinguishes between plate-like and tubular
structures, RB accounts for the deviation from a blob-like
structure, and S differentiates between tubular structures and
noise. α, β, and ρ control the sensitivity of the vesselness
measure. The experiments in this paper use α = 0.5, β = 0.5,
and ρ = 5.

The Hessian matrix is computed by convolving the inten-
sity image with second and cross derivatives of the Gaussian
function. In a multiscale analysis, the response of the
vesselness filter will achieve the maximum at a scale, which
approximately matches the size of vessels to detect. There-
fore, the vesselness measure is estimated by computing (6)
for a range of scales and selecting the maximum response:
F = maxσmin≤σ≤σmaxF(λ), where σ is the standard deviation of
the Gaussian function [36].

The vesselness image is rescaled to [0, 1] and can be con-
sidered as a probability-like estimate of vesselness features.
Larger vesselness value indicates that the underlying object is
more likely to be a vessel structure, as shown in Figure 2. Let
F1(x) and F2(x) represent the vesselness measures of images

(a)

(b)

Figure 2: The vesselness images calculated from lung CT grayscale
images. (a) A coronal slice of TLC data and (b) its vesselness mea-
sure. Vesselness measure is computed in multiscale analysis with
σ = [2, 3] and rescaled to [0, 1].

I1 and I2 at location x, respectively. In order to match similar
vesselness patterns between two images, the sum of squared
vesselness measure difference (SSVMD) is proposed as

CSSVMD =
∑

x∈Ω
[F2(x)− F1(h(x))]2. (7)

Mismatch from vessel to tissue structures will result in a
larger SSVMD cost.

2.2.3. Elastic Regularization. Enforcing constraints on the
transformation helps generate physiologically more mean-
ingful registration results. Continuum mechanical models
such as linear elasticity [11, 37, 38] and viscous fluid [37, 39]
can be used to regularize the transformation. A common
way to constraint the deformation is applying a differential
operator on the transformation and formulating an additive
cost term in the objective cost function [11, 22, 40–46]. In
our registration algorithms, a linear-elastic constraint was
used to regularize the displacement fields u, where u =
h(x)− x. This regularization term is formed as

CREG(u) =
∫

Ω
‖Lu(x)‖2dx, (8)
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where L can be any nonsingular linear differential operator
[47]. Here the linear elasticity operator L is formed as
Lu(x) = −α∇2u(x) − β∇(∇ · u(x)) + γu(x), where ∇ =
[∂/∂x1, ∂/∂x2, ∂/∂x3] and ∇2 = ∇ · ∇ = [∂2/∂x2

1 + ∂2/∂x2
2 +

∂2/∂x2
3].

Using the linear elasticity differential operator can help
smooth the transformation and help eliminate abrupt
changes in the displacement fields. The linear elasticity
operator is used in this work to help avoid the transformation
from folding onto itself. However, it cannot prevent the
Jacobian of the transformation from going negative, that
is, destroying the image topology under the transformation
[48]. Additional constraints on the displacement parameters
are applied in the optimization method.

2.2.4. Total Cost Function. Finally, the total cost is defined as
a linear combination of the intensity-based costs, vesselness
measure preserving cost, and regularization constraint

CTOTAL(h) = CINTENSITY(I1, I2, h)

+ χCSSVMD(I1, I2, h) + γCREG(h).
(9)

CINTENSITY can be one of the four intensity-based similarity
cost functions: CSSD, CMI, CNCC, or CSSTVD. Constants χ and
γ are weights to adjust the significance of the three terms.

2.3. Transformation Parameterization. The transform defines
how points from the template image I1 are mapping to their
corresponding points in the target image I2. In three dimen-
sional space, let x = (x1, x2, x3)T define a voxel coordinate in
the image domain of the target image I2. The transformation
h is a (3 × 1) vector-valued function defined on the voxel
lattice of target image, and h(x) gives the corresponding
location in template image to the point x.

The lung is composed of nonhomogenous soft tissue.
Lung tissue expansion varies in different lung regions. Since
lung expansion is nonuniform, nonrigid transformations are
required to model the lung motion across different inflation
levels. To represent the locally varying geometric distortions,
the transformation can be represented by various forms of
basis function, such as Fourier transform, thin-plate splines,
and B-splines. B-splines are well suited for image registration
and are able to capture the local nonrigid deformation
between two images [40, 45]. Considering the computa-
tional efficiency and accuracy requirement, the cubic B-
spline based parameterization was chosen to represent the
transformation.

Let φi = [φx(xi),φy(xi),φz(xi)]T be the coefficients of
the ith control point xi on the spline lattice G along each
direction. The transformation is represented as

h(x) = x +
∑

i∈G
φiβ(x − xi), (10)

where β(x, y, z) = β(x)β(y)β(z) is a separable convolution
kernel. β(x) is the uniform cubic B-spline basis function
defined as

β(x) =

⎧
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⎪
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⎪
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⎪

⎪

⎪

⎨
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⎪

⎪

⎪

⎪

⎪
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⎩

(

4− 6x2 + 3|x|3
)

6
, 0 ≤ |x| < 1,

(2− |x|)3

6
, 1 ≤ |x| < 2,

0, |x| ≥ 2.

(11)

2.4. Optimization Method. Most registration cost functions
can be minimized using standard optimization techniques.
There are several existing methods in numerical analysis such
as the partial differential equation (PDE) solvers used to
solve for elastic and fluid transformations, steepest gradient
descent method, conjugate gradient method, and so forth.
Similar to [9, 13], our similarity cost functions were opti-
mized using a limited memory quasi-Newton minimization
method with bounds (L-BFGS-B) [49] algorithm. It is well
suited for optimization with a high-dimensional parameter
space. In addition, this algorithm allows bound constraints
on the independent variables.

The bound constraints are applied on B-Spline coeffi-
cients to guarantee the local injectivity (one-to-one prop-
erty) of the transformation [50], that is, the transformation
maintains the topology of two images. According to their
analysis, the displacement fields are locally injective over the
domain if the B-Spline coefficients satisfy the conditions that
φx ≤ δx/K , φy ≤ δy/K , and φz ≤ δz/K , where δx, δy , and
δz are the B-Spline grid sizes along each direction, and K is a
constant approximately equal to 2.479772335.

2.5. Registration Accuracy Assessment. Validation and evalu-
ation of image registration accuracy is an important task to
quantify the performance of registration algorithms. Due to
the absence of a “gold standard” to judge a registration algo-
rithm, multiple evaluation methods are needed to evaluate
the performance of image registration algorithms.

2.5.1. Landmark Matching Accuracy. Intrasubject CT images
of the lung contain identifiable landmarks such as airway-
tree and vascular-tree branch points. For each pair of FRC
and TLC data, 100–150 distinctive landmark pairs were
selected as branch points of the vascular tree using a semi-
automatic method [24]. The landmarks were selected so
that they were dispersed throughout the lungs. An example
of the landmark distribution is shown as green points in
Figure 3. The Euclidean distance between the registration-
predicted landmark position and its true position is defined
as landmark error. Let pk and qk be the location of landmark
k on template image I1 and target image I2, respectively. The
landmark error is calculated as d = ‖pk − h(qk)‖.

2.5.2. Vessel Matching Accuracy. Vessels in the lung keep their
tubular shape and tree structures during the respiratory
process. The vascular tree provides rich spatial and shape
information in parenchyma regions. Therefore, evaluating



6 International Journal of Biomedical Imaging

the alignment on vessel trees is an important approach to
validate the matching accuracy at the lung feature level.

The registration accuracy on the vessel tree was evaluated
by vessel matching distance, which is calculated as the dis-
tance between a point on the target vessel tree and its closet
point on warped template vessel tree. Mathematically, this
distance can be stated as the vessel positioning error (VPE)

VPE(x) = min
y∈V2

d
(

x, h
(

y
))

(12)

for a given point x in V1, where V1 and V2, respectively, are
the set of all points in the vessel trees extracted from image I1

and I2, respectively, and d(·) defines the Euclidean distance.
The vessel positions used for validation are segmented using
vessel segmentation algorithm [51]. Examples of the vessel
tree extractions are shown as red curves in Figure 3.

2.5.3. Fissure Alignment Distance. The human lungs are
divided into five independent compartments called lobes.
Lobar fissures are defined as the division between adja-
cent lung lobes and represent important physical bound-
aries within the lungs. Therefore, alignment of fissures
is an important evaluation criterion. Fissure locations are
extracted from the images by segmenting the lobes using [52]
and then identifying voxels adjacent to two lobe segmenta-
tions. The fissure positioning error (FPE) is defined as the
minimum distance between a point on the deformed fissure
and the closest point on the corresponding target fissure

FPE(x) = min
y∈F2

d
(

x, h
(

y
))

(13)

for a given point x in F1, where F1 and F2, respectively, are the
set of all points in the fissure in image I1 and I2, respectively.
Examples of the lobe segmentations are shown in different
colors in Figure 3.

2.5.4. Assessment of Lung Function by the Jacobian Determi-
nane. The lung tissue deformation pattern can be used as
an index to assess lung function. In this work, the Jacobian
determinant of the transformation field derived by image
registration is used to estimate the local tissue deformation
[53].

The Jacobian determinant (often simply called the Jaco-
bian) [11, 48, 54] is a measurement to estimate the pointwise
expansion and contraction during the deformation. The
Jacobian of the transformation J(h(x)) is defined as

J(h(x)) =

∣
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∂h2(x)
∂x2

∂h2(x)
∂x3

∂h3(x)
∂x1

∂h3(x)
∂x2

∂h3(x)
∂x3

∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

. (14)

Using a Lagrangian reference frame, a Jacobian value of one
corresponds to zero expansion or contraction. Local tissue
expansion corresponds to a Jacobian greater than one, and
local tissue contraction corresponds to a Jacobian less than
one.

(a)

(b)

Figure 3: Distribution of landmarks (green points) selected at
vessel-tree branch points on (a) FRC and (b) TLC scans of one
subject. Vessel trees are marked as red curves. Different lobes are
marked using different colors.

2.6. Preprocessing. Preprocessing starts by identifying the
lung regions in all images using the method described in
[28]. Images and masks are downsampled by a factor of 2 in
each dimension to reduce computation time. For each pair of
data sets, FRC images are used as the target image, and TLC
images are used as the template image.

In order to evaluate how the vesselness cost function
affects the registration algorithm results, we performed
registration experiments using different similarity costs on
parenchyma region in each pair of data sets for comparison.
There were four registration methods driven by intensity-
only similarity cost functions described in Section 2.2.1,
and the same four registration methods that included the
feature-based similarity cost SSVMD. After registration, the
results from each method were evaluated and compared
through matching accuracy on landmarks, vessels, fissures,
and underlying transformation properties.

3. Results

3.1. Tuning Weighing Parameters. We designed experiments
to discover good parameter settings on intensity-based cost,
feature-based cost CSSVMD, and regularization term CREG in
(9). Here we discuss our approach for selecting registration
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Table 1: Registration experimental parameters and cost values.

Experiment SSVMD REG χ γ CSSTVD CSSVMD CREG Jacobian min Jacobian 1/max

CT01 No No 0.0 0 34118 57879 172605 0.25 0.11

CT02 No Yes 0.0 0.05 32751 49291 111770 0.38 0.12

CT03 No Yes 0.0 0.1 32059 46156 86780 0.44 0.13

CT04 No Yes 0.0 0.2 33571 44504 63530 0.50 0.13

CT05 No Yes 0.0 0.4 36736 44853 43827 0.58 0.15

CT06 Yes No 0.5 0 31288 29492 153068 0.33 0.12

CT07 Yes Yes 0.5 0.05 30275 28611 110499 0.40 0.12

CT08 Yes Yes 0.5 0.1 30074 27326 87990 0.44 0.13

CT09 Yes Yes 0.5 0.2 31194 26812 63612 0.50 0.14

CT10 Yes Yes 0.5 0.4 33426 28111 46094 0.57 0.14

CT11 Yes No 1 0 30873 23963 161940 0.36 0.11

CT12 Yes Yes 1 0.05 29991 22560 115510 0.40 0.11

CT13 Yes Yes 1 0.1 29923 22328 94784 0.44 0.13

CT14 Yes Yes 1 0.2 30956 22261 70079 0.49 0.13

CT15 Yes Yes 1 0.4 32830 23576 50549 0.57 0.15

CT16 Yes No 1.5 0 31713 20082 181465 0.34 0.11

CT17 Yes Yes 1.5 0.05 31046 20059 124563 0.39 0.12

CT18 Yes Yes 1.5 0.1 30871 20270 103340 0.43 0.12

CT19 Yes Yes 1.5 0.2 31407 20024 76930 0.49 0.13

CT20 Yes Yes 1.5 0.4 32982 21413 55329 0.56 0.14

CT21 Yes No 2 0 32532 18907 192035 0.34 0.11

CT22 Yes Yes 2 0.05 31566 18396 134317 0.39 0.12

CT23 Yes Yes 2 0.1 31709 18742 109223 0.41 0.12

CT24 Yes Yes 2 0.2 32172 19218 82619 0.49 0.13

CT25 Yes Yes 2 0.4 33252 19946 59525 0.56 0.14

parameters for CSSTVD. Parameter settings for registration
algorithms using other intensity-based cost functions, for
example, CSSD, CMI, and CNCC can be tuned in the same way.

Table 1 and Figure 4 show the results for 20 CT-to-CT
registration experiments, as the weighting values χ (ved) and
γ (smooth) are varied. The cost functions were values aver-
aged on the results from six subjects. The values of χ and γ
ranged from 0 to 2 and 0 to 0.5, respectively.

Experiment CT01 corresponds to unconstrained esti-
mation, in which the transformation was estimated only
according to the intensity similarity cost. This experiment
produced relatively the worse registration results as evident
by the large values of CSSTVD, CSSVMD, and CREG in the res-
pective tables.

Experiments CT02, CT03, CT04, and CT05 demonstrate
the effect of estimating the transformations without min-
imizing the vesselness similarity cost while varying γ the
weight of the linear elastic cost. Minimizing the linear elastic
cost is good for optimizing the other two similarity costs
CSSTVD and CSSVMD, as we can see from Figures 4(a) and 4(b).
γ values larger than 0.2 are not recommended since they
may cause the CSSTVD to increase dramatically. Increasing the
constraint weights results in a worse intensity match between
images.

Experiments CT06, CT11, CT16, and CT21 demonstrate
the effect of using vesselness similarity cost function without

enforcing the linear elasticity constraint. The CSSVMD values
for these experiments are much lower than the previous
cases since they are being minimized. The intensity similarity
costs CSSTVD also decreased using registration with vesselness
constraint, especially when χ is in the range of [0.5, 1].

The remaining experiments show the effect of jointly esti-
mating the transformations, while varying the weights on
both the vesselness similarity cost and the linear elasticity
constraint. These experiments show that it is possible to find
a set of parameters that produce better results using both
constraints than only using one or none.

The optimal set of parameters should be chosen to pro-
vide a good intensity match and vesselness match, while pro-
ducing less spatial distortion as measured by an acceptable
level of linear elastic cost. From the experiments, we observe
that χ = 0.5 ∼ 1 and γ = 0.05 ∼ 0.1 are good for minimizing
the three costs at the same time. In this work, weighting
parameters were set to χ = 1 and γ = 0.1 when using SSTVD
as intensity cost function. Parameters in registration using
other three intensity cost functions are set in the same way.

3.2. Multiresolution Optimization Scheme. A spatial multi-
resolution optimization procedure from coarse to fine was
used to improve speed, accuracy, and robustness of the
registration. In the experiments, the spatial multiresolution
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Figure 4: Plots of (a) SSTVD, (b) SSVMD, and (c) REG costs using different parameter settings. Data are averaged through results from six
subjects.

strategy proceeds from low to high resolution, starts at one-
eighth of the spatial resolution, and increases by a factor of
two until the full resolution is reached. Meanwhile, a hie-
rarchy of B-Spline grid spacings from large to small was also
used. The finest B-spline grid space used in the experiments
was 4 mm. An example multiresolution scheme design for
minimizing the total cost function is listed in Table 2. The
image spatial resolution and B-spline grid spacing were
refined alternatively.

Figure 5 lists the cost values at each iteration of one
registration. At 1/8 and 1/4 image resolutions, registration
speed is fast and runs for more iterations. The optimization
is stopped before reaching the maximum iterations if the
total cost change is nominal between consecutive iterations.
Global shapes are matched at these two levels. At 1/2 image
resolution, the inner structures get clearer and are aligned
roughly. Registration at full resolution further adjusts the
local structures matching. During the registration procedure,
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Figure 5: Continued.
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Figure 5: Cost functions versus iteration associated with experiment CT13. Cost function values are recorded at (a) 1/8, (b) 1/4, (c) 1/2, and
(d) full image resolution.
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Figure 6: Box plot of landmark errors for six subjects after using
eight registration methods. Results from methods with SSD, MI,
NCC, and SSTVD metric along contain outliers beyond the error
range.

the Jacobian values are checked to make sure that they remain
positive.

3.3. Landmark Matching Accuracy. The transformation
determined from registration can be used to track the land-
mark movements. The original average landmark error is
27.40 ± 14.37 mm with a maximum landmark error of
72.79 mm. Table 3 shows the mean and standard deviation of
landmark errors through all six subjects after using different
registration methods. Figure 6 shows the box plot of land-
mark errors.

3.4. Vessel Matching Accuracy. The original average vessel
positioning error was 12.65 ± 14.18 mm. Table 4 shows the
vessel positioning errors for six subjects after using differ-
ent registration methods. The average errors and standard
deviations were all decreased after adding the vesselness
constraint.

Figure 7 shows the distance map on FRC vessel tree from
one subject after using eight different registration methods.
These results show that large errors between the deformed
source and target vessel trees are reduced after adding the
SSVMD constraint.

3.5. Fissure Alignment Distance. For each pair of FRC and
TLC images, the parenchyma regions were segmented into
five lobes, and the three fissures were identified, where the
lobe segmentations touched each other. The average fissure
positioning error was 9.20 ± 7.94 mm before registration.
The mean and standard deviation of fissure positioning error
over all three fissures after using eight registration methods
are shown in Table 5. The average fissure positioning
error across the six subjects was 9.20 mm and decreased to
around 1.50 mm and 1.00 mm without and with SSVMD

Table 2: An example multiresolution scheme.

Image resolution B-spline grid size Max. iteration

1/8
128 mm 200

64 mm 200

1/4
32 mm 200

16 mm 200

1/2
16 mm 50

8 mm 50

1
8 mm 20

4 mm 20

cost, respectively. The fissure positioning matching accuracy
improved by approximately 30% after adding SSVMD cost.

The distance map on fissure planes from one subject
after using eight different registration methods is shown in
Figure 8. Notice that adding SSVMD helped improve regis-
tration accuracy in the lung regions near the thoracic cage.

3.6. Assessment of Lung Function by Jacobian. Registration
methods producing similar matching accuracy on the feature
locations may result in different underlying parenchymal
tissue functions. In order to reveal the lung tissue deforma-
tion pattern, the Jacobian of the transformation field is used
to estimate the local tissue deformation [4]. The Jacobian
determinant J at a given point gives important information
about the behavior of transformation h near that point.
Figure 9 shows the Jacobian maps resulted from eight regis-
tration methods. Arrows denote regions that show different
deformation patterns using intensity-only registration meth-
ods, but they are more similar after adding vesselness cost
function.

4. Discussion

The experiments presented in this paper were designed to
evaluate the performance of the vesselness constraint when
it was added to intensity-based registration algorithms. The
experimental results of tuning weighting parameters in the
total cost function suggest that using both vesselness and
smoothing constraint can help minimize the similarity cost,
as shown in Figure 4. Figure 5 shows that the multiresolution
scheme is important and useful for solving complex regis-
tration problem efficiently. This is because the registration is
first performed at a coarse scale, where the images have much
fewer voxels, which are fast and can help eliminate local
minima.

Table 3 and Figure 6 demonstrate that adding the
SSVMD cost function reduced the mean landmark errors of
the four basic registration methods. Landmarks with large
errors, shown as outliers in the box plot, are aligned much
better when SSVMD is used. Figure 7 reflects the fact that
the SSVMD constraint helps improve matching accuracy
over all four basic methods on small vessels, around lung
boundaries and in the region near diaphragm. The reason
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(a) SSD (b) SSD + SSVMD
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(h) SSTVD + SSVMD

Figure 7: Vessel positioning errors (mm) on target vessel tree. Results are generated from eight registration methods. Arrows denote regions
of large discrepancies between the deformed source and target vessel trees. Note that the errors in these regions were reduced after adding
the SSVMD constraint to the registration algorithms.

for this is that blood vessels in those regions are usually
small and have low intensity contrast, and thus they con-
tribute little to conventional intensity similarity criteria. The
vesselness measurement enhances blood vessel information

and strengthens contribution of small vessels to registration
process when using the SSVMD similarity cost. Figure 8
indicates that the SSVMD not only helps match vessel struc-
tures, but also helps improve registration accuracy in other
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(c) MI (d) MI + SSVMD
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(h) SSTVD + SSVMD

Figure 8: Fissure positioning error (mm) on fissure planes. Arrows denote regions of large discrepancies between the deformed source and
target fissure planes.

regions, such as positions on the fissure planes near the tho-
racic cage.

Good matching accuracy on the feature locations does
not guarantee that the parenchymal tissue is correctly
aligned. Rather than evaluates the alignment accuracy, the
Jacobian evaluates the quality of the transformation prop-
erties. It reveals how well the transformation preserves topo-
logy and measures the differential lung volume change. In
Figure 9, the left column shows that the Jacobian maps gene-
rated by the four registration methods without SSVMD have
a similar ventral to dorsal gradient as expected since the

subjects were imaged in the supine orientation. However,
the local tissue deformation patterns derived from these
methods are different even in the methods pair SSD and
SSTVD, which have similar landmark errors as shown in
Table 3. This is consistent with the findings that while the
intermethod variability on the landmark error is small, there
may be discriminating difference in the Jacobian maps [55].
The Jacobian map from SSTVD method shows more local
structure in the dorsal region. The right column shows that
adding the SSVMD constraint produces Jacobian images that
are much more similar across different registration methods
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Figure 9: The color-coded Jacobian maps of a sagittal slice resulted from eight registration methods. Blue and purple regions have larger
lung deformation, while red and orange regions are deforming less. Arrows denote regions which show different deformation patterns using
intensity-only registration methods.
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Table 3: Landmark errors (mm) using six subjects.

Without SSVMD With SSVMD

Avg. Max Avg. Max

SSD 0.95± 1.29 15.97 0.71± 0.46 4.56

MI 1.05± 1.85 16.72 0.68± 0.46 5.11

NCC 1.07± 1.57 15.18 0.74± 0.57 6.99

SSTVD 0.92± 1.28 15.38 0.71± 0.45 4.1

Table 4: Vessel positioning errors (mm) averaged over six subjects.

SSD MI NCC SSTVD

Without
SSVMD

0.74± 0.62 0.70± 0.61 0.74± 0.65 0.67± 0.57

With
SSVMD

0.63± 0.52 0.64± 0.53 0.65± 0.54 0.60± 0.49

Table 5: Fissure positioning errors (mm) using six subjects.

SSD MI NCC SSTVD

Without
SSVMD

1.48± 1.84 1.48± 1.78 1.62± 2.04 1.41± 1.61

With
SSVMD

1.05± 0.82 1.05± 0.79 1.07± 0.89 1.00± 0.69

and reveal more detailed deformation patterns especially
near vessel locations. Generally, vessels have smaller vol-
ume changes comparing with parenchymal tissues during
breathing cycles. The four Jacobian maps produced using
registration methods with SSVMD are similar, which may
imply that the derived local deformation patterns are more
reliable.

Comparing the four intensity-only registration methods,
registration driven by SSTVD achieved lower landmark error
and lower vessel and fissure positioning errors than other
three methods driven by SSD, MI, and NCC. Figures 7 and
8 reflect that SSTVD-driven registration resulted in more
accurate matching within the region near the thoracic cage.
The reason may be that SSTVD cost function contains a
local Jacobian factor, which can constrain incorrect large
displacement and help prevent distortion near the thoracic
cage. After adding SSVMD on the four intensity-based cost
functions, these methods generated similar transformations.
SSVMD helps improve matching accuracy in regions near the
thoracic cage and near the diaphragm. In our experiments,
registration method using SSTVD + SSVMD resulted in the
smallest matching errors. Therefore, we may consider that
SSTVD + SSVMD is the best similarity cost function to
register lung CT images according to our evaluation.

The effectiveness of the vesselness preserving metric was
tested on a variety of lung CT data sets as part of the grand
challenge “Evaluation of Methods for Pulmonary Image
Registration 2010” (EMPIRE10) [56, 57]. More than 20
individual registration algorithms from different groups were

applied to 30 pairs of lung CT scans in the EMPIRE10 chal-
lenge. Besides our tissue volume and vesselness preserving
method, one other method called the Robust TreeReg [58]
also combined intensity and feature information. The Robust
TreeReg algorithm performed a robust tree registration
(RTR) and added correspondences between bifurcations
of the vessel tree to the voxel-based mutual information
driven registration. For this registration challenge, our tissue
volume and vesselness preserving method had better perfor-
mance than the Robust TreeReg method. This result may
imply that the vesselness measure provides more feature
information than the bifurcation landmarks of the vessel
tree. In addition, our tissue volume (or mass) and vesselness
preserving method was shown to improve matching results
compared to methods that only incorporated mass preserva-
tion [59].

5. Conclusions

This paper presented nonrigid registration algorithms driven
by commonly used intensity-based criteria for lung regis-
tration, a feature-based vesselness constraint, and a linear
elastic smoothing constraint. Results were presented to show
that adding the SSVMD constraint to existing similarity cost
functions such as SSD, MI, NCC, and SSTVD reduces land-
mark error and improves overlap on vascular tree and fis-
sure planes. The purpose of adding the vesselness cost in
registration process is that it can help correct the mismatches
of small vessels and their surrounding lung tissues. Using the
SSVMD constraint was shown to produce a more detailed
expansion pattern for local tissue, especially near vessel loca-
tions. Also, the expansion patterns were similar across differ-
ent registration methods. This demonstrates that using the
SSVMD constraint not only helps match on feature struc-
tures, but also helps align corresponding parenchymal tissues
providing a more reliable pattern of local lung tissue defor-
mation. In this paper, registration method preserving both
tissue volume and vesselness measurement performed best
on matching 3D lung CT data according to our evaluation.

Acknowledgments

The authors would like to thank Dr. K. Murphy and Dr. B.
van Ginneken for providing the software iX for generating
and annotating landmarks. This work was supported by
Grant nos. HL079406, HL64368, HL080285, EB004126, and
CA129022.



16 International Journal of Biomedical Imaging

References

[1] B. Li, G. E. Christensen, E. A. Hoffman, G. McLennan, and J.
M. Reinhardt, “Establishing a normative atlas of the human
lung: intersubject warping and registration of volumetric CT
images,” Academic Radiology, vol. 10, no. 3, pp. 255–265, 2003.

[2] T. Guerrero, K. Sanders, E. Castillo et al., “Dynamic ventila-
tion imaging from four-dimensional computed tomography,”
Physics in Medicine and Biology, vol. 51, no. 4, pp. 777–791,
2006.

[3] G. E. Christensen, J. H. Song, W. Lu, I. E. Naqa, and D. A. Low,
“Tracking lung tissue motion and expansion/compression
with inverse consistent image registration and spirometry,”
Medical Physics, vol. 34, no. 6, pp. 2155–2163, 2007.

[4] J. M. Reinhardt, K. Ding, K. Cao, G. E. Christensen, E. A.
Hoffman, and S. V. Bodas, “Registration-based estimates of
local lung tissue expansion compared to xenon CT measures
of specific ventilation,” Medical Image Analysis, vol. 12, no. 6,
pp. 752–763, 2008.

[5] T. A. Sundaram and J. C. Gee, “Towards a model of lung
biomechanics: pulmonary kinematics via registration of serial
lung images,” Medical Image Analysis, vol. 9, no. 6, pp. 524–
537, 2005.

[6] K. Ding, Y. Yin, K. Cao et al., “Evaluation of lobar biomechan-
ics during respiration using image registration,” in Proceedings
of the 12th International Conference on Medical Image Com-
puting and Computer Assisted Intervention (MICCAI ’09), vol.
5761, pp. 739–746, 2009.

[7] Y. Yin, E. A. Hoffman, and C. L. Lin, “Lung lobar slippage
assessed with the aid of image registration,” in Proceedings of
the 13th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI ’10), vol. 13, pp.
578–585, Springer, 2010.

[8] K. Ding, J. E. Bayouth, J. M. Buatti, G. E. Christensen, and
J. M. Reinhardt, “4DCT-based measurement of changes in
pulmonary function following a course of radiation therapy,”
Medical Physics, vol. 37, no. 3, pp. 1261–1272, 2010.

[9] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W.
Eubank, “PET-CT image registration in the chest using free-
form deformations,” IEEE Transactions on Medical Imaging,
vol. 22, no. 1, pp. 120–128, 2003.

[10] D. Sarrut, V. Boldea, S. Miguet, and C. Ginestet, “Simulation
of four-dimensional CT images from deformable registration
between inhale and exhale breath-hold CT scans,” Medical
Physics, vol. 33, no. 3, pp. 605–617, 2006.

[11] G. E. Christensen and H. J. Johnson, “Consistent image
registration,” IEEE Transactions on Medical Imaging, vol. 20,
no. 7, pp. 568–582, 2001.

[12] V. Gorbunova, P. Lo, H. Ashraf, A. Dirksen, M. Nielsen,
and M. de Bruijne, “Weight preserving image registration for
monitoring disease progression in lung CT,” in Proceedings of
the 11th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI ’08), vol. 5242,
pp. 863–870, 2008.

[13] Y. Yin, E. A. Hoffman, and C. L. Lin, “Mass preserving non-
rigid registration of CT lung images using cubic B-spline,”
Medical Physics, vol. 36, no. 9, pp. 4213–4222, 2009.

[14] L. Fan, Chang Wen Chen, J. M. Reinhardt, and E. A.
Hoffman, “Evaluation and application of 3D lung warping and
registration model using HRCT images,” in Medical Imaging
2001: Physiology and Function from Multidimensional Images,
Proceedings of SPIE, pp. 17–22, February 2001.

[15] M. R. Kaus, K. K. Brock, V. Pekar, L. A. Dawson, A. M. Nichol,
and D. A. Jaffray, “Assessment of a model-based deformable
image registration approach for radiation therapy planning,”
International Journal of Radiation Oncology Biology Physics,
vol. 68, no. 2, pp. 572–580, 2007.

[16] M. M. Coselmon, J. M. Balter, D. L. McShan, and M. L. Kessler,
“Mutual information based CT registration of the lung at
exhale and inhale breathing states using thin-plate splines,”
Medical Physics, vol. 31, no. 11, pp. 2942–2948, 2004.

[17] S. Krishnan, K. C. Beck, J. M. Reinhardt et al., “Regional lung
ventilaton from volumetric CT scans using image warping
functions,” in Proceedings of the 2nd IEEE International Sym-
posium on Biomedical Imaging: Macro to Nano, pp. 792–795,
Washington, DC, USA, April 2004.

[18] V. Gorbunova, S. Durrleman, P. Lo, X. Pennec, and M. de
Bruijne, “Curve- and surface-based registration of lung ct
images via currents,” in Proceedings of the 2nd International
Workshop on Pulmonary Image Analysis, pp. 15–25, 2009.

[19] Y. Yin, E. A. Hoffman, K. Ding, J. M. Reinhardt, and C.
L. Lin, “A cubic B-spline-based hybrid registration of lung
CT images for a dynamic airway geometric model with large
deformation,” Physics in Medicine and Biology, vol. 56, no. 1,
pp. 203–218, 2011.

[20] K. Cao, G. E. Christensen, K. Ding, and J. M. Reinhardt,
“Intensity-and-landmarkdriven, inverse consistent, B-Spline
registration and analysis for lung imagery,” in Proceedings of
the 2nd International Workshop on Pulmonary Image Analysis,
pp. 137–148, 2009.

[21] V. Gorbunova, S. Durrleman, P. Lo, X. Pennec, and M. De
Bruijne, “Lung CT registration combining intensity, curves
and surfaces,” in Proceedings of the 7th IEEE International
Symposium on Biomedical Imaging (ISBI ’10), pp. 340–343,
April 2010.

[22] H. J. Johnson and G. E. Christensen, “Consistent landmark
and intensity-based image registration,” IEEE Transactions on
Medical Imaging, vol. 21, no. 5, pp. 450–461, 2002.

[23] C. V. Stewart, Y. L. Lee, and C. L. Tsai, “An uncertainty-driven
hybrid of intensity-based and feature-based registration with
application to retinal and lung CT images,” in Proceedings of
the 7th International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI ’04), pp. 870–
877, September 2004.

[24] K. Murphy, B. van Ginneken, J. P. W. Pluim, S. Klein, and M.
Staring, “Semi-automatic reference standard construction for
quantitative evaluatoin of lung CT registration,” in Proceedings
of the 11th International Conference on Medical Image Com-
puting and Computer Assisted Intervention (MICCAI ’08), vol.
5242, pp. 1006–1013, 2008.

[25] K. Cao, K. Ding, G. E. Christensen, and J. M. Reinhardt,
“Tissue volume and vesselness measure preserving nonrigid
registration of lung CT images,” in Medical Imaging 2010:
Image Processing, Proceedings of SPIE, usa, February 2010.

[26] K. Cao, K. Du, K. Ding, J. M. Reinhardt, and G. E. Christensen,
“Regularized nonrigid registration of lung CT images by
preserving tissue volume and vesselness measure,” in Grand
Challenges in Medical Image Analysis, 2010.

[27] K. Cao, K. Ding, G. E. Christensen, M. L. Raghavan, R. E.
Amelon, and J. M. Reinhardt, “Unifying vascular information
in intensity-based nonrigid lung ct registration,” in Proceed-
ings of the 4th International Workshop on Biomedical Image
Registration, vol. 6204 of Lecture Notes in Computer Science,
pp. 1–12, Springer, 2010.



International Journal of Biomedical Imaging 17

[28] S. Hu, E. A. Hoffman, and J. M. Reinhardt, “Automatic lung
segmentation for accurate quantitation of volumetric X-ray
CT images,” IEEE Transactions on Medical Imaging, vol. 20, no.
6, pp. 490–498, 2001.

[29] G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill,
and D. J. Hawkes, “A comparison of similarity measures for
use in 2-D-3-D medical image registration,” IEEE Transactions
on Medical Imaging, vol. 17, no. 4, pp. 586–595, 1998.

[30] M. Holden, D. L. G. Hill, E. R. E. Denton et al., “Voxel similar-
ity measures for 3-D serial MR brain image registration,” IEEE
Transactions on Medical Imaging, vol. 19, no. 2, pp. 94–102,
2000.

[31] Wikipedia, “Histogram matching,” Hypertext Document,
2012.
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